Lý thuyết hệ trục tọa độ
1. Trục và độ dài đại số trên trục
1. Trục và độ dài đại số trên trục
a) Trục tọa độ: Trục tọa độ là một đường thẳng trên đó đã xác định một điểm gốc \(O\) và một vec tơ đơn vị \(\vec e\)
b) Tọa độ của một điểm: Ứng với mỗi điểm \(M\) trên trục tọa độ thì có một số thực \(k\) sao cho
\(\overrightarrow {OM} = k\overrightarrow e \)
Số \(k\) được gọi là tọa độ của điểm \(M\) đối với trục đã cho.
c) Độ dài đại số: Cho hai điểm \(A,B\) trên trục số, tồn tại duy nhất một số \(a\) sao cho \(\overrightarrow {AB} = a\overrightarrow e \)
\(a\) được gọi là độ dài đại số của vectơ \(\overrightarrow {AB} \), kí hiệu \(a = \overrightarrow {AB} \).
Chú ý:
- Nếu vectơ \(\overrightarrow {AB} \) cùng hướng với vec tơ đơn vị \(\vec e\) của trục thì \(\overline {AB} > 0\), còn nếu \(\overrightarrow {AB} \) ngược hướng với vec tơ đơn vị \(\vec e\) thì \(\overline {AB} <0\)
- Nếu điểm \(A\) có tọa độ trên trục là \(a\) và điểm \(B\) có tọa độ là \(b\) thì
\(\overline {AB} =b-a\)
2. Hệ trục tọa độ
a) Định nghĩa: Hệ trục tọa độ \(\left( {0;\overrightarrow i ;\overrightarrow j } \right)\) gồm hai trục \(\left( {0;\overrightarrow i } \right)\) và \(\left( {0;\overrightarrow j } \right)\) vuông góc với nhau.
\(O\) là gốc tọa độ
\(\left( {0;\overrightarrow i } \right)\) là trục hoành
\(\left( {0;\overrightarrow j } \right)\) là trục tung
\(|\overrightarrow i | = |\overrightarrow j |=1\)
Mặt phẳng được trang bị một hệ tọa độ được gọi là mặt phẳng tọa độ
b) Tọa độ vectơ
\(\overrightarrow u = x\overrightarrow i + y\overrightarrow j \Leftrightarrow u(x;y)\)
hai vectơ bằng nhau khi và chỉ khi các tọa độ tương ứng bằng nhau
\(\overrightarrow u (x;y);\overrightarrow {u'} (x';y')\)
\(\overrightarrow u = \overrightarrow {u'} \Leftrightarrow \)\(x = x'\) và \(y = y'\)
c) Tọa độ một điểm:
Với mỗi điểm \(M\) trong mặt phẳng tọa độ thì tọa độ của vec tơ \(\overrightarrow {OM} \) được gọi là tọa độ của điểm \(M\).
\(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j \Leftrightarrow M(x;y)\)
d) Liên hệ giữa tọa độ của điểm và của vectơ:
cho hai điểm \(A({x_A},{y_A});B({x_B},{y_B})\)
Ta có \(\overrightarrow {AB} ({x_B} - {x_A};{y_B} - {y_A})\)
Tọa độ của vec tơ thì bằng tọa độ của điểm ngọn trừ đi tọa độ tương ứng của điểm đầu.
3. Tọa độ của tổng, hiệu ,tích của một số với một vectơ
Cho hai vec tơ \(\overrightarrow u ({u_1};{u_2});\overrightarrow v ({v_1};{v_2})\)
Ta có
\(\eqalign{
& \overrightarrow u + \overrightarrow v = ({u_1} + {v_1};{u_2} + {v_2}) \cr
& \overrightarrow u - \overrightarrow v = ({u_1} - {v_1};{u_2} - {v_2}) \cr
& k\overrightarrow u = (k{u_1};k{u_2}) \cr} \)
4. Tọa độ của trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác
a) Tọa độ trung điểm: Cho hai điểm \(A({x_A},{y_A});B({x_B},{y_B})\) tọa độ của trung điểm \(I({x_I};{y_I})\) được tính theo công thức:
$$\left\{ \matrix{
{x_I} = {{{x_A} + {x_B}} \over 2} \hfill \cr
{y_I} = {{{y_A} + {y_B}} \over 2} \hfill \cr} \right.$$
b) Tọa độ trọng tâm: Tam giác \(ABC\) có \(3\) đỉnh \(A({x_A},{y_A});B({x_B},{y_B});C({x_C};{y_C})\). Trọng tâm \(G\) của tam giác có tọa độ:
$$\left\{ \matrix{
{x_G} = {{{x_A} + {x_B} + {x_C}} \over 3} \hfill \cr
{y_G} = {{{y_A} + {y_B} + {y_C}} \over 3} \hfill \cr
{z_G} = {{{z_A} + {z_B} + {z_C}} \over 3} \hfill \cr} \right.$$