Giải bài 5 trang 68 sgk đại số 10
Giải các hệ phương trình
- Bài học cùng chủ đề:
- Bài 6 trang 68 sgk đại số 10
- Bài 7 trang 68 sgk đại số 10
- Lý thuyết về phương trình và hệ phương trình bậc nhất nhiều ẩn
- Ngữ pháp tiếng anh hay nhất
Bài 5. Giải các hệ phương trình
a) \(\left\{\begin{matrix} x + 3y + 2z =8 & \\ 2x + 2y + z =6& \\ 3x +y+z=6;& \end{matrix}\right.\)
b) \(\left\{\begin{matrix} x - 3y + 2z =-7 & \\ -2x + 4y + 3z =8& \\ 3x +y-z=5.& \end{matrix}\right.\)
Giải
a) \(x + 3y + 2z = 8 \Rightarrow x = 8 - 3y - 2z\).
Thế vào phương trình thứ hai và thứ ba thì được
\( \Leftrightarrow \left\{\begin{matrix} x= 8 - 3y -2z & \\ 2(8-3y-2z)+2y +z=6& \\ 3(8-3y-2z) +y+z=6& \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x= 8 - 3y -2z & \\ 4y +3z=10& \\ 8y + 5z =18& \end{matrix}\right.\)
Giải hệ hai phương trình với ẩn \(y\) và \(z\):
\(\left\{\begin{matrix} 4y +3z =10 & \\ 8y +5z =18& \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} y=1 & \\ z=2& \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x=1 & \\ y=1& \\ z=2& \end{matrix}\right.\)
Nghiệm của hệ phương trình ban đầu là \((1; 1; 2)\).
Ta cũng có thể giải bằng phương pháp cộng đại số như sau: Nhân phương trình thứ nhất với \(-2\) rồi cộng vào phương trình thứ hai.
Nhân phương trình thứ nhất với \(-3\) cộng vào phương trình thứ ba thì được
\(\Leftrightarrow \left\{\begin{matrix} x+3y+2z=8 & \\ -4y-3z=-10& \\ -8y -5z=-18& \end{matrix}\right.\)
Giải hệ phương trình \(\left\{\begin{matrix} -4y -3z =-10 & \\ -8y -5z =-18& \end{matrix}\right.\) ta được kết quả như trên.
b) \(\left\{\begin{matrix} x - 3y + 2z =-7 & \\ -2x + 4y + 3z =8& \\ 3x +y-z=5.& \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix} x - 3y +2z =-7 & \\ -2y + 7z = -6& \\ 10y - 7z =26& \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =\frac{11}{4} & \\ y =\frac{5}{2}& \\ z =-\frac{1}{7}& \end{matrix}\right.\).