Giải bài 3 trang 88 sgk đại số 10

Giải thích vì sao các cặp bất phương trình sau tương đương?

Bài 3. Giải thích vì sao các cặp bất phương trình sau tương đương?

a) \(- 4x + 1 > 0\) và \(4x - 1 <0\);

b) \(2x^2+5 ≤ 2x – 1\) và \(2x^2– 2x + 6 ≤ 0\);

c) \(x + 1 > 0\) và \(x + 1 + \frac{1}{x^{2}+1}>\frac{1}{x^{2}+1};\)

d) \(\sqrt{x-1} ≥ x\) và \((2x +1)\sqrt{x-1} ≥ x(2x + 1)\).

Giải

a) Tương đương. Vì nhân hai vế bất phương trình thứ nhất với \(-1\) và đổi chiều bất phương trình thì được bất phương trình thứ 2.

b) Chuyển vế các hạng tử vế phải sang vế trái ở bất phương trình thứ nhất thì được bất phương trình thứ hai tương đương.

c) Tương đương. Vì cộng hai vế bất phương trình thứ nhất với \(\frac{1}{x^{2}+1} > 0\) với mọi \(x\) ta được bất phương trình thứ 3.

d) Điều kiện xác định bất phương trình thứ nhất: \(D =[1;+\infty)\).

\(2x + 1 > 0 , ∀x ∈ D\).

Nhân hai vế bất phương trình thứ nhất với \((2x + 1) \) ta được phương trình thứ hai. Vậy hai bất phương trình tương đương.  

Các bài học liên quan
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật