Giải bài 85 trang 130 SGK giải tích 12 nâng cao

Cho x < 0. Chứng minh rằng:

Bài 85. Cho \(x < 0\). Chứng minh rằng: \(\sqrt {{{ - 1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} } \over {1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} }}}  = {{1 - {2^x}} \over {1 + {2^x}}}\)

Giải

Ta có: \(1 + {1 \over 4}{\left( {{2^x} - {2^{ - x}}} \right)^2} = {1 \over 4}\left( {4 + {4^x} - 2 + {4^{ - x}}} \right) = {1 \over 4}\left( {{4^x} + 2 + {4^{ - x}}} \right) = {1 \over 4}{\left( {{2^x} + {2^{ - x}}} \right)^2}\)

Do đó:

\(\eqalign{
& \sqrt {{{ - 1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} } \over {1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} }}} = \sqrt {{{ - 1 + {1 \over 2}\left( {{2^x} + {2^{ - x}}} \right)} \over {1 + {1 \over 2}\left( {{2^x} + {2^{ - x}}} \right)}}} = \sqrt {{{{2^x} - 2 + {2^{ - x}}} \over {{2^x} + 2 + {2^{ - x}}}}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt {{{{2^x} - 2 + {1 \over {{2^x}}}} \over {{2^x} + 2 + {1 \over {{2^x}}}}}} = \sqrt {{{{4^x} - {{2.2}^x} + 1} \over {{4^x} + {{2.2}^x} + 1}}} = \sqrt {{{{{\left( {{2^x} - 1} \right)}^2}} \over {{{\left( {{2^x} + 1} \right)}^2}}}} = {{1 - {2^x}} \over {1 + {2^x}}} \cr} \) 

                                (vì với \(x < 0\) thì \({2^x} < 1\))  

Các bài học liên quan
Bài 90 trang 131 SGK giải tích 12 nâng cao
Bài 92 trang 131 SGK giải tích 12 nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật