Giải câu 34 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Sử dụng công thức biến đổi tổng thành tích hoặc tích thành tổng để giải các phương trình sau:
- Bài học cùng chủ đề:
- Câu 35 trang 42 SGK Đại số và Giải tích 11 Nâng cao
- Câu 36 trang 42 SGK Đại số và Giải tích 11 Nâng cao
- Câu 37 trang 46 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 34. Sử dụng công thức biến đổi tổng thành tích hoặc tích thành tổng để giải các phương trình sau :
a. \(\cos x\cos 5x = \cos 2x\cos 4x\) ;
b. \(\cos 5x\sin 4x=\cos 3x\sin 2x\) ;
c. \(\sin 2x + \sin 4x = \sin 6x\) ;
d. \(sin x + \sin 2x = \cos x + \cos 2x\)
Giải
a. Ta có:
\(\eqalign{& \cos x\cos 5x = \cos 2x\cos 4x \cr & \Leftrightarrow {1 \over 2}\left( {\cos 6x + \cos 4x} \right) = {1 \over 2}\left( {\cos 6x + \cos 2x} \right) \Leftrightarrow \cos 4x = \cos 2x \cr & \Leftrightarrow \left[ {\matrix{{4x = 2x + k2\pi } \cr {4x = - 2x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = k{\pi \over 3}} \cr} } \right. \Leftrightarrow x = k{\pi \over 3} \,\,(k\in\mathbb Z)\cr} \)
b.
\(\eqalign{& \cos 5x\sin 4x = \cos 3x\sin 2x \Leftrightarrow {1 \over 2}\left( {\sin 9x - \sin x} \right) = {1 \over 2}\left( {\sin 5x - \sin x} \right) \cr & \Leftrightarrow \sin 9x = \sin 5x \Leftrightarrow \left[ {\matrix{{9x = 5x + k2\pi } \cr {9x = \pi - 5x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 2}} \cr {x = {\pi \over {14}} + k{\pi \over 7}} \cr} } \,\,(k\in\mathbb Z) \right. \cr} \)
c.
\(\eqalign{& \sin 2x + \sin 4x = \sin 6x \Leftrightarrow 2\sin 3x\cos x = 2\sin 3x\cos 3x \cr & \Leftrightarrow \sin 3x\left( {\cos x - \cos 3x} \right) = 0 \Leftrightarrow \left[ {\matrix{{\sin 3x = 0} \cr {\cos x = \cos 3x} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k\pi } \cr {x = k{\pi \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k{\pi \over 2}} \cr} } \,\,(k\in\mathbb Z)\right. \cr} \)
d.
\(\eqalign{& \sin x + \sin 2x = \cos x + \cos 2x \Leftrightarrow 2\sin {{3x} \over 2}\cos {x \over 2} = 2\cos {{3x} \over 2}\cos {x \over 2} \cr & \Leftrightarrow \cos {x \over 2}\left( {\sin {{3x} \over 2} - \cos {{3x} \over 2}} \right) = 0 \Leftrightarrow \left[ {\matrix{{\cos {x \over 2} = 0} \cr {\sin {{3x} \over 2} = \cos {{3x} \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{{x \over 2} = {\pi \over 2} + k\pi } \cr {\tan {{3x} \over 2} = 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = \pi + k2\pi } \cr {x = {\pi \over 6} + k{{2\pi } \over 3}} \cr} } \right.\left( {k \in\mathbb Z} \right) \cr} \)
dayhoctot.com
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học