Giải bài 2 trang 62 sgk đại số 10

Giải và biện luận các phương trình sau theo tham số m

Bài 2. Giải và biện luận các phương trình sau theo tham số \(m\)

a) \(m(x - 2) = 3x + 1\);

b) \(m^2x + 6 = 4x + 3m\);

c) \((2m + 1)x – 2m = 3x – 2\).

Giải

a) \(m(x - 2) = 3x + 1\)

\(⇔ (m – 3)x = 2m + 1\).

+) Nếu \(m ≠ 3\), phương trình có nghiệm duy nhất \(x = \frac{2m +1}{m-3}\).

+) Nếu \(m = 3\) phương trình trở thành \(0.x = 7\).

    Phương trình vô nghiệm.

b) \(m^2x + 6 = 4x + 3m\)

\(⇔ (m^2– 4)x = 3m – 6\).

+) Nếu \(m^2– 4 ≠ 0 ⇔ m ≠ ± 2\), phương trình có nghiệm \(x = \frac{3m - 6}{m^{2}-4}=\frac{3}{m+2}\).

+) Nếu \(m = 2,\) phương trình trở thành \(0.x = 0\) đúng với mọi \(x ∈ \mathbb R\).

    Phương trình có vô số nghiêm.

+) Nếu \(m = -2\), phương trình trở thành \(0.x = -12\), phương trình vô nghiệm.

c) \((2m + 1)x – 2m = 3x – 2\)

\(⇔ 2(m – 1)x = 2(m-1)\).

+) Nếu \(m ≠ 1\), phương trình có nghiệm duy nhất \(x = 1\).

+) Nếu \(m = 1\), phương trình trở thành \(0.x=0\) đúng với mọi \(x ∈\mathbb R\).

    Phương trình có vô số nghiệm.

Các bài học liên quan
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật