Giải bài 30 Trang 172 SGK Đại số và Giải tích 12 Nâng cao
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 và , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là một hình vuông cạnh .
- Bài học cùng chủ đề:
- Bài 31 Trang 172 SGK Đại số và Giải tích 12 Nâng cao
- Bài 32 Trang 173 SGK Đại số và Giải tích 12 Nâng cao
- Bài 33 Trang 173 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 30. Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;(0 \le x \le \pi )\) là một tam giác đều cạnh \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).
Giải
Ta có: \(S(x) = {(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} )^2}.{{\sqrt 3 } \over 4} = \sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}}\)
Do đó: \(V = \int\limits_0^\pi {S(x)dx = \int\limits_0^\pi {\sqrt 3 } } \sin {\rm{x}}dx = - \sqrt 3 \cos x\mathop |\nolimits_0^\pi = 2\sqrt 3 \)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học