Giải bài 14 trang 17 SGK Đại số và Giải tích 12 Nâng cao

Xác định các hệ số a,b, c sao cho hàm số đạt cực trị bằng 0

Bài 14. Xác định các hệ số \(a,b, c\) sao cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) đạt cực trị bằng \(0\) tại điểm \(x=-2\) và đồ thị của hàm số đi qua điểm \(A\left( {1;0} \right)\).

Giải

\(f'\left( x \right) = 3{x^2} + 2ax + b\)

\(f\) đạt cực trị tại điểm \(x=-2\) nên \(f'\left( { - 2} \right) = 0\)
\( \Rightarrow \)\(\,12 - 4a + b = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

\(f\left( { - 2} \right) = 0 \Rightarrow  - 8 + 4a - 2b + c = 0\,\,\,\,\left( 2 \right)\)

Đồ thị hàm số đi qua điểm \(A\left( {1;0} \right)\) nên: \(f\left( 1 \right) = 0 \Rightarrow 1 + a + b + c = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\)

Từ (1), (2), (3) ta có hệ phương trình:

\(\left\{ \matrix{
4a - b = 12 \hfill \cr
4a - 2b + c = 8 \hfill \cr
a + b + c = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 3 \hfill \cr
b = 0 \hfill \cr
c = - 4 \hfill \cr} \right.\)

Vậy \(a=3, b=0, c=-4\).

Các bài học liên quan
Bài 19 trang 22 SGK Đại số và Giải tích 12 Nâng cao
Bài 20 trang 22, SGK Đại số và Giải tích 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật