Giải bài 3 trang 113 SGK Hình học 11

Trong mặt phẳng

Bài 3. Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:

a) \(\widehat {ABD}\) là góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\);

b) Mặt phẳng \((ABD)\) vuông góc với mặt phẳng \((BCD)\);

c) \(HK//BC\) với \(H\) và \(K\) lần lượt là giao điểm của \(DB\) và \(DC\) với mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(DB\).

Giải

a) Tam giác \(ABC\) vuông tại \(B\) nên \(AB\bot BC\)    (1)

\(AD\) vuông góc với \((\alpha)\) nên \(AD\bot BC\)                (2)

Từ (1) và (2) suy ra \(BC\bot (ABD)\) suy ra \(BC\bot BD\)

\(\left. \matrix{
(ABC) \cap (DBC) = BC \hfill \cr
BD \bot BC \hfill \cr
AB \bot BC \hfill \cr} \right\} \Rightarrow \) góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\) là góc  \(\widehat {ABD}\)

b) 

\(\left. \matrix{
BC \bot (ABD) \hfill \cr
BC \subset (BCD) \hfill \cr} \right\} \Rightarrow (ABD) \bot (BCD)\)

c) 

 Mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(DB\) nên \(HK\bot BC\)

Trong \((BCD)\) có: \(HK\bot BC\) và \(BC\bot BD\) nên suy ra \(HK// BC\).

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật