Giải câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng cao
Chứng minh rằng
- Bài học cùng chủ đề:
- Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao
- Câu 16 trang 109 SGK Đại số và Giải tích 11 Nâng cao
- Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 14. Chứng minh rằng dãy số \((u_n)\) với
\({u_n} = {{2n + 3} \over {3n + 2}}\)
Là một dãy số giảm và bị chặn.
Giải
Ta có:
\(\eqalign{
& {u_n} = {{2n + 3} \over {3n + 2}} = {{{2 \over 3}\left( {3n + 2} \right) + {5 \over 3}} \over {3n + 2}} = {2 \over 3} + {5 \over {3\left( {3n + 2} \right)}} \cr
& {u_{n + 1}} - {u_n} = {5 \over 3}\left( {{1 \over {3n + 5}} - {1 \over {3n + 2}}} \right) < 0 \cr
& \Rightarrow {u_{n + 1}} < {u_n} \cr} \)
\(⇒ (u_n)\) là dãy số giảm
Ta lại có \(0 < {{2n + 3} \over {3n + 2}} \le 1 \;\forall n \in\mathbb N^*\)
Vậy \((u_n)\) là dãy số giảm và bị chặn.
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học