Giải câu 23 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Cho cấp số cộng
- Bài học cùng chủ đề:
- Câu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao
- Câu 25 trang 115 SGK Đại số và Giải tích 11 Nâng cao
- Câu 26 trang 115 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 23. Cho cấp số cộng (un) có \(u_{20}= -52\) và \(u_{51}= -145\). Hãy tìm số hạng tổng quát của cấp số cộng đó.
Giải
Gọi \(d\) là công sai của cấp số cộng.
Ta có:
\(\left\{ {\matrix{{{u_{20}} = - 52} \cr {{u_{51}} = - 145} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{u_1} + 19d = - 52} \cr {{u_1} + 50d = - 145} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{u_1} = 5} \cr {d = - 3} \cr} } \right.\)
Vậy
\(\eqalign{
& {u_n} = {u_1} + \left( {n - 1} \right)d = 5 + \left( {n - 1} \right)\left( { - 3} \right) \cr
& {u_n} = - 3n + 8 \cr} \)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học