Giải câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Cho dãy số (un) xác định bởi
- Bài học cùng chủ đề:
- Câu 16 trang 109 SGK Đại số và Giải tích 11 Nâng cao
- Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao
- Câu 18 trang 109 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 15. Cho dãy số (un) xác định bởi
\({u_1} = 3\,\text{ và }\,{u_{n + 1}} = {u_n} + 5\) với mọi \(n ≥ 1\).
a. Hãy tính u2, u4 và u6.
b. Chứng minh rằng \(u_n= 5n – 2\) với mọi \(n ≥ 1\).
Giải
a. Ta có:
\(\eqalign{
& {u_2} = {u_1} + 5 = 8 \cr
& {u_3} = {u_2} + 5 = 13 \cr
& {u_4} = {u_3} + 5 = 18 \cr
& {u_5} = {u_4} + 5 = 23 \cr
& {u_6} = {u_5} + 5 = 28 \cr} \)
b. Ta sẽ chứng minh : \(u_n= 5n – 2\) (1) với mọi \(n \in \mathbb N^*\), bằng phương pháp qui nạp.
+) Với \(n = 1\), ta có \(u_1= 3 = 5.1 – 2\)
Vậy (1) đúng khi \(n = 1\).
+) Giả sử (1) đúng với \(n = k, k\in \mathbb N^*\), tức là:
\(u_k=5k-2\)
+) Ta sẽ chứng minh (1) cũng đúng khi \(n = k + 1\)
Thật vậy, từ công thức xác định dãy số (un) và giả thiết qui nạp ta có :
\({u_{k + 1}} = {u_k} + 5 = 5k - 2 + 5 = 5\left( {k + 1} \right) - 2\)
Do đó (1) đúng với mọi \(n \in \mathbb N^*\).
dayhoctot.com
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học