Giải câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao
Trên tia Ox
- Bài học cùng chủ đề:
- Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao
- Câu 21 trang 114 SGK Đại số và Giải tích 11 Nâng cao
- Câu 22 trang 115 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 20. Trên tia Ox lấy các điểm A1, A2, …, An, … sao cho với mỗi số nguyên dương n, OAn = n. Trong cùng một nửa mặt phẳng có bờ là đường thẳng chứa tia Ox, vẽ các nửa đường tròn đường kính OAn, n = 1, 2, … . Kí hiệu u1 là diện tích của nửa hình tròn đường kính OA1 và với mỗi n ≥ 2, kí hiệu un là diện tích của hình giới hạn bởi nửa đường tròn đường kính OAn – 1 , nửa đường tròn đường kính OAn và tia Ox (h 3.3). Chứng minh rằng dãy số (un) là một cấp số cộng. Hãy xác định công sai của cấp số cộng đó.
Giải:
Với \(n ≥ 2\) ta có :
\(\eqalign{
& {u_n} = {1 \over 2}\left( {\pi {{OA_n^2} \over 4} - \pi {{OA_{n - 1}^2} \over 4}} \right) \cr
& = {1 \over 8}\pi \left[ {\left( {{n^2} - {{\left( {n - 1} \right)}^2}} \right)} \right] \cr
& = {{\left( {2n - 1} \right)\pi } \over 8}\,\left( {n \ge 2} \right) \cr
& \Rightarrow {u_{n + 1}} - {u_n} = {{2n + 1} \over 8}\pi - {{\left( {2n - 1} \right)} \over 8}\pi = {\pi \over 4},\forall n \ge 2 \cr} \)
Mặt khác
\({u_2} - {u_1} = {{3\pi } \over 8} - {\pi \over 8} = {\pi \over 4}\)
Vậy \({u_{n + 1}} - {u_n} = {\pi \over 4}\;\forall n \in\mathbb N^*\)
Do đó (un) là cấp số cộng với công sai \(d = {\pi \over 4}.\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học