Giải bài 2 trang 144 SGK Giải tích 12
Giải bài 2 trang 144 SGK Giải tích 12. Số nào trong các số sau là số thuần ảo?
- Bài học cùng chủ đề:
- Bài 3 trang 144 SGK Giải tích 12
- Bài 4 trang 144 SGK Giải tích 12
- Bài 5 trang 144 SGK Giải tích 12
- Ngữ pháp tiếng anh hay nhất
Đề bài
Số nào trong các số sau là số thuần ảo?
A. \((\sqrt2+ 3i) + (\sqrt2 - 3i)\)
B. \((\sqrt2+ 3i) . (\sqrt2 - 3i)\)
C. \((2 + 2i)^2\)
D. \({{2 + 3i} \over {2 - 3i}}\)
Phương pháp giải - Xem chi tiết
\(\begin{array}{l}\left( {a + bi} \right) + \left( {c + di} \right) = \left( {a \pm c} \right) + \left( {b \pm d} \right)i\\\left( {a + bi} \right)\left( {c + di} \right) = \left( {ac - bd} \right)i + \left( {ad + bc} \right)i\end{array}\)
Lời giải chi tiết
Ta tìm phần thực của các số đã cho:
(A) \(\left( {\sqrt 2 + 3i} \right) + \left( {\sqrt 2 - 3i} \right) = \sqrt 2 + 3i + \sqrt 2 - 3i = 2\sqrt 2 \) là số thực.
(B) \(\left( {\sqrt 2 + 3i} \right)\left( {\sqrt 2 - 3i} \right) = {\left( {\sqrt 2 } \right)^2} - {\left( {3i} \right)^2} = 2 + 9 = 11\) là số thực.
(C) \({\left( {2 + 2i} \right)^2} = 4 + 8i - 4 = 8i\) là số thuần ảo.
(D) \(\frac{{2 + 3i}}{{2 - 3i}} = \frac{{{{\left( {2 + 3i} \right)}^2}}}{{\left( {2 - 3i} \right)\left( {2 + 3i} \right)}} = \frac{{4 + 12i - 9}}{{4 + 9}} = \frac{{ - 5}}{{13}} + \frac{{12}}{{13}}i\)
Chọn đáp án (C)