Giải bài 21 trang 82 SGK Đại số và Giải tích 12 Nâng cao
Giải các phương trình sau bằng cách đặt :
- Bài học cùng chủ đề:
- Bài 22 trang 82 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 21. Giải các phương trình sau bằng cách đặt \(t = \root 4 \of x \):
a) \(\sqrt x + \root 4 \of x = 2;\) b) \(\sqrt x - 3\root 4 \of x + 2 = 0\).
Giải
a) Điều kiện \(x \ge 0\)
Đặt \(t = \root 4 \of x \left( {t \ge 0} \right)\), ta được phương trình \({t^2} + t = 2\).
Ta có
\({t^2} + t = 2 \Leftrightarrow {t^2} + t - 2 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = - 2\text{ loại } \hfill \cr} \right.\) \( \Leftrightarrow \root 4 \of x = 1 \Leftrightarrow x = 1\)
Vậy tập nghiệm phương trình là S =\(\left\{ 1 \right\}\)
b) Điều kiện \(x \ge 0\). Đặt \(t = \root 4 \of x \,\,\left( {t \ge 0} \right)\) ta được phương trình
\({t^2} - 3t + 2 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\root 4 \of x = 1 \hfill \cr
\root 4 \of x = 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 16 \hfill \cr} \right.\)
Vậy \(S = \left\{ {1;16} \right\}\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học