Giải bài 1 trang 12 sgk hình học lớp 10

Bài 1. Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho AM > MB.

Bài 1. Cho đoạn thẳng \(AB\) và điểm \(M\) nằm giữa \(A\) và \(B\) sao cho \(AM > MB\). Vẽ các vectơ \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) và \(\overrightarrow{MA}\)- \(\overrightarrow{MB}\)

Giải

Trên đoạn thẳng \(AB\) ta lấy điểm \(M'\) để có \(\overrightarrow{AM'}\)= \(\overrightarrow{MB}\)


Như vậy \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\)= \(\overrightarrow{MA}\) + \(\overrightarrow{AM'}\) = \(\overrightarrow{MM'}\) ( quy tắc 3 điểm)

Vậy vec tơ \(\overrightarrow{MM'}\) chính là vec tơ tổng của \(\overrightarrow{MA}\)  và \(\overrightarrow{MB}\)

\(\overrightarrow{MM'}\) = \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) .

Ta lại có \(\overrightarrow{MA}\) - \(\overrightarrow{MB}\) = \(\overrightarrow{MA}\) + (- \(\overrightarrow{MB}\))

\(\Rightarrow\) \(\overrightarrow{MA}\) - \(\overrightarrow{MB}\)   = \(\overrightarrow{MA}\) + \(\overrightarrow{BM}\) (vectơ đối)

Theo tính chất giao hoán của tổng vectơ ta có

\(\overrightarrow{MA}\) +\(\overrightarrow{BM}\) = \(\overrightarrow{BM}\) + \(\overrightarrow{MA}\) = \(\overrightarrow{BA}\) (quy tắc 3 điểm)

Vậy \(\overrightarrow{MA}\) - \(\overrightarrow{MB}\) = \(\overrightarrow{BA}\)

Các bài học liên quan
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật