Giải bài 6 trang 100 SGK Hình học 12

Trong không gian Oxyz cho mặt cầu (S) có phương trình x2 + y2 + z2 = 4a2 (a>0). a) Tính diện tích mặt cầu (S) và thể tích của khối cầu tương ứng.

Bài 6. Trong không gian \(Oxyz\) cho mặt cầu \((S)\) có phương trình \({x^2} + {\rm{ }}{y^2} + {\rm{ }}{z^2} = {\rm{ }}4{a^{2}}\left( {a > 0} \right)\).

a) Tính diện tích mặt cầu \((S)\) và thể tích của khối cầu tương ứng.

b) Mặt cầu \((S)\) cắt mặt phẳng \((Oxy)\) theo đường tròn \((C)\). Xác định tâm và bán kính của \((C)\).

c) Tính diện tích xung quanh của hình trụ nhận \((C)\) làm đáy và có chiều cao là \(a\sqrt3\). Tính thể tích của khối trụ tương ứng.

Giải

a) Mặt cầu \((S)\) có tâm là gốc toạ độ \(O\) và bán kính \(R = 2a\) nên có

\(S = 16πa^2\) ; \(V ={{32\pi {a^2}} \over 3}\)

b) Phương trình đường tròn \((C)\), giao tuyến của mặt cầu và mặt phẳng \(Oxy\) là:\(\left\{ \matrix{
{x^2} + {y^2} + {z^2} = 4{a^2} \hfill \cr
z = 0 \hfill \cr} \right.\)

Từ đây suy ra mặt phẳng \(z = 0\) cắt mặt cầu theo đường tròn \((C)\) có tâm là gốc toạ độ \(O\) và bán kính là \(2a\).

c) Hình trụ có đáy là đường tròn \((C)\) và chiều cao \(a\sqrt3\) có:

\(S_{xq} = 2π.(2a).a\sqrt3\)   \( \Rightarrow  S_{xq}= 4πa^2\sqrt3\)

\(V = π(2a)^2.a\sqrt3\)        \( \Rightarrow  V = 4πa^3\sqrt3\)

dayhoctot.com

Các bài học liên quan
Bài 11 trang 101 SGK Hình học 12
Bài 12 trang 101 SGK Hình học 12
Bài 15 trang 101 SGK Hình học 12
Bài 16 trang 102 SGK Hình học 12
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật