Giải bài 5 trang 99 SGK Hình học 12

Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC). Biết rằng AC = AD = 4 cm, AB = 3 cm, BC = 5 cm. a) Tính thể tích tứ diện ABCD.

Bài 5. Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \((ABC)\). Biết rằng \(AC = AD = 4 cm\), \(AB = 3 cm, BC = 5 cm\).

a) Tính thể tích tứ diện \(ABCD\).

b) Tính khoảng cách từ điểm \(A\) tới mặt phẳng \((BCD)\).

Giải

Chọn hệ toạ độ gốc là điểm \(A\), các đường thẳng \(AB, AC, AD\) theo thứ tự là các trục \(Ox, Oy, Oz\).

Ta có: \(A(0; 0; 0), B(3; 0; 0)\)

           \(C(0; 4; 0), D(0; 0; 4)\)

Ta có: \(\overrightarrow {AB}  = (3; 0; 0) \Rightarrow AB = 3\)

           \(\overrightarrow {AC}  = (0; 4; 0)  \Rightarrow AC = 4\)

           \(\overrightarrow {AD}  = (0; 0; 4) \Rightarrow AD = 4\)

\(V_{ABCD}\) = \({1 \over 6}AB.AC.AD = 8 (cm^3)\)

b) Áp dụng công thức phương trình mặt phẳng theo đoạn chắn, ta có phương trình mặt phẳng \((BDC)\) là:

\({x \over 3} + {y \over 4} + {z \over 4} = 1 \Leftrightarrow 4x + 3y + 3z - 12 = 0\)

Từ đây ta có: \(d(A, (BDC)) ={{\left| {12} \right|} \over {\sqrt {{3^2} + {4^2} + {4^2}} }} = {{12} \over {\sqrt {34} }}\)

Các bài học liên quan
Bài 9 trang 100 SGK Hình học 12
Bài 11 trang 101 SGK Hình học 12
Bài 12 trang 101 SGK Hình học 12
Bài 15 trang 101 SGK Hình học 12
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật