Giải bài 12 trang 47 SGK Giải tích 12
Giải bài 12 trang 47 SGK Giải tích 12. Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ là nghiệm của phương trình f’’(x) = 0
- Bài học cùng chủ đề:
- Bài 1 trang 47 SGK Giải tích 12
- Bài 2 trang 47 SGK Giải tích 12
- Bài 3 trang 47 SGK Giải tích 12
- Ngữ pháp tiếng anh hay nhất
Đề bài
Cho hàm số: \(f(x) = {1 \over 3}{x^3} - {1 \over 2}{x^2} - 4x + 6\)
a) Giải phương trình \(f’(sin x) = 0\)
b) Giải phương trình \(f’’(cos x) = 0\)
c) Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ là nghiệm của phương trình \(f’’(x) = 0\).
Phương pháp giải - Xem chi tiết
+) Tính đạo hàm \(f'(x)\) và \(f''(x).\)
a) Thay \(x=sin x\) vào phương trình \(f'(x) =0\) để giải phương trình lượng giác tìm nghiệm \(x.\)
b) Thay \(x=cos x\) vào phương trình \(f''(x) =0\) để giải phương trình lượng giác tìm nghiệm \(x.\)
c) Giải phương trình \(f''(x)=0\) để tìm nghiệm \(x_0.\)
+) Lập phương trình tiếp tuyến của đồ thị hàm số theo công thức: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + y\left( {{x_0}} \right).\)
Lời giải chi tiết
\(f(x) = {1 \over 3}{x^3} - {1 \over 2}{x^2} - 4x + 6\)
\( \Rightarrow f’(x) = x^2– x – 4\)
\(\Rightarrow f’’(x) = 2x – 1\)
a) Ta có:
\(\eqalign{
& f'(s{\rm{inx}}) = 0 \Leftrightarrow {\sin ^2}x - {\mathop{\rm s}\nolimits} {\rm{in x}} - 4 = 0 \cr
& \Leftrightarrow {\mathop{\rm s}\nolimits} {\rm{in x = }}{{1 \pm \sqrt {17} } \over 2}(1) \cr
& Do{{1 - \sqrt {17} } \over 2} < - 1,{{1 + \sqrt {17} } \over 2} > 1 \cr} \)
Suy ra (1) vô nghiệm.
b) Ta có:
\(\eqalign{
& f''(cosx) = 0 \Leftrightarrow 2cosx - 1 = 0 \cr
& \Leftrightarrow \cos x = {1 \over 2} = \cos {\pi \over 3} \cr
& \Leftrightarrow x = \pm {\pi \over 3} + k2\pi ,k \in\mathbb Z \cr} \)
c) Nghiệm của phương trình \(f’’(x) = 0\) là \(x = {1 \over 2}\)
Ta có:
\(\eqalign{
& f'({1 \over 2}) = {1 \over 4} - {1 \over 2} - 4 = {{ - 17} \over 4} \cr
& \Rightarrow f({1 \over 2}) = {1 \over 3}.{1 \over 8} - {1 \over 2}.{1 \over 4} - 4.{1 \over 2} + 6 = {{47} \over {12}} \cr} \)
Phương trình tiếp tuyến cần tìm có dạng:
\(y = {{ - 17} \over 4}(x - {1 \over 2}) + {{47} \over {12}} \Leftrightarrow y = - {{17} \over 4}x + {{145} \over {24}}\).