Giải câu 34 trang 83 SGK Đại số và Giải tích 11 Nâng cao

Gieo ba đồng xu cân đối một cách độc lập. Tính xác suất để:

Bài 34. Gieo ba đồng xu cân đối một cách độc lập. Tính xác suất để :

a. Cả ba đồng xu đều sấp ;

b. Có ít nhất một đồng xu sấp ;

c. Có đúng một đồng xu sấp.

Giải

a. Gọi \(A_i\) là biến cố “Đồng xu thứ i sấp” (\(i = 1,2,3\)), ta có: \(P\left( A \right) = {1 \over 2}.\) Các biến cố \({A_1},{\rm{ }}{A_2},{\rm{ }}{A_3}\) độc lập. Theo quy tắc nhân xác suất, ta có: \(P({A_1}{A_2}{A_3}) = P({A_1})P({A_2})P({A_3})=  {1 \over 8}\)

b. Gọi \(H\) là biến cố “Có ít nhất một đồng xu sấp”. Biến cố đối của biến cố \(H\) là \(\overline H \) :”Cả ba đồng xu đều ngửa”. Tương tự như câu a ta có \(P\left( {\overline H } \right) = {1 \over 8}.\) Vậy :

\(P\left( H \right) = 1 - {1 \over 8} = {7 \over 8}\)

c. Gọi \(K\) là biến cố “Có đúng một đồng xu sấp”. Ta có:

\(K = {A_1}\overline {{A_2}} \overline {{A_3}} \cup \overline {{A_1}} {A_2}\overline {{A_3}} \cup \overline {{A_1}} \overline {{A_2}} {A_3}\)

Theo quy tắc cộng xác suất, ta có:

\(P\left( K \right) = P\left( {{A_1}\overline {{A_2}} \overline {{A_3}} } \right) + P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) + P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right)\)

Theo quy tắc nhân xác suất, ta tìm được :

\(P\left( {{A_1}\overline {{A_2}} \overline {{A_3}} } \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right)P\left( {\overline {{A_3}} } \right) = {1 \over 8}\)

Tương tự  \(P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) = P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right) = {1 \over 8}\).

Từ đó \(P\left( K \right) = {3 \over 8}\)

Các bài học liên quan
Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 43 trang 90 SGK Đại số và Giải tích 11 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật