Giải câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Trong một trò chơi điện tử, xác suất để An thắng trong một trân là 0,4 (không có hòa). Hỏi An phải chơi tối thiểu bao nhiêu trận để xác suất An thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 ?
- Bài học cùng chủ đề:
- Câu 41 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 42 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 40. Trong một trò chơi điện tử, xác suất để An thắng trong một trân là 0,4 (không có hòa). Hỏi An phải chơi tối thiểu bao nhiêu trận để xác suất An thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 ?
Giải
Gọi n là số trận mà An chơi.
A là biến cố “An thắng ít nhất một trận trong loạt chơi n trận”.
Biến cố A là \(\overline A \) : “An thua cả n trận”.
Ta có: \(P\left( {\overline A } \right) = {\left( {0,6} \right)^n}\)
Vậy \(P(A) = 1 – (0,6)^n\). Ta cần tìm số nguyên dương n nhỏ nhất thỏa mãn \(P(A) ≥ 0,95\) tức là \(0,5 ≥ (0,6)^n\).
Ta có: \({\left( {0,6} \right)^5} \approx {\rm{ }}0,078;{\rm{ }}{\left( {0,6} \right)^6} \approx {\rm{ }}0,047\). Vậy n nhỏ nhất là 6. Thành thử An phải chơi tối thiểu 6 trận.
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học