Giải câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Có hai hòm đựng thẻ, mỗi hòm đựng 12 thẻ đánh số từ 1 đến 12. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 12.
- Bài học cùng chủ đề:
- Câu 39 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 41 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 38. Có hai hòm đựng thẻ, mỗi hòm đựng 12 thẻ đánh số từ 1 đến 12. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 12.
Giải
Goị A là biến cố “Thẻ rút từ hòm thứ nhất không đánh số 12”
B là biến cố “Thẻ rút từ hòm thứ hai không đánh số 12”.
Ta có: \(P\left( A \right) = P\left( B \right) = {{11} \over {12}}.\)
Gọi H là biến cố “Trong hai thẻ rút từ hai hòm có ít nhất một thẻ đánh số 12”.
Khi đó biến cố đối của biến cố H là \(\overline H \): “Cả hai thẻ rút từ hai hòm đều không đánh số 12”.
Vậy \(\overline H = AB\) .
Theo qui tắc nhân xác suất, ta có:
\(\eqalign{
& P\left( {\overline H } \right) = P\left( {AB} \right) = P\left( A \right)P\left( B \right) = {{121} \over {144}} \cr
& \text{Vậy }\,P\left( H \right) = 1 - P\left( {\overline H } \right) = 1 - {{121} \over {144}} = {{23} \over {144}} \cr} \)
dayhoctot.com
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học