Giải câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao

Có hai hòm đựng thẻ, mỗi hòm đựng 12 thẻ đánh số từ 1 đến 12. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 12.

Bài 38. Có hai hòm đựng thẻ, mỗi hòm đựng 12 thẻ đánh số từ 1 đến 12. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 12.

Giải

Goị A là biến cố “Thẻ rút từ hòm thứ nhất không đánh số 12”

B là biến cố “Thẻ rút từ hòm thứ hai không đánh số 12”.

Ta có:  \(P\left( A \right) = P\left( B \right) = {{11} \over {12}}.\)

Gọi H là biến cố “Trong hai thẻ rút từ hai hòm có ít nhất một thẻ đánh số 12”.

Khi đó biến cố đối của biến cố H là  \(\overline H \): “Cả hai thẻ rút từ hai hòm đều không đánh số 12”.

Vậy \(\overline H = AB\) .

Theo qui tắc nhân xác suất, ta có:

\(\eqalign{
& P\left( {\overline H } \right) = P\left( {AB} \right) = P\left( A \right)P\left( B \right) = {{121} \over {144}} \cr
& \text{Vậy }\,P\left( H \right) = 1 - P\left( {\overline H } \right) = 1 - {{121} \over {144}} = {{23} \over {144}} \cr} \)

 dayhoctot.com

Các bài học liên quan
Câu 43 trang 90 SGK Đại số và Giải tích 11 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật