Giải câu 17 trang 29 SGK Đại số và Giải tích 11 Nâng cao

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40˚ bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số

Bài 17. Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40˚ bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số

\(d\left( t \right) = 3\sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] + 12\,voi\,t \in \,va\,0 < t \le 365.\)

a. Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm ?

b. Vào ngày nào trong năm thì thành phố A có ít giờ có ánh sáng mặt trời nhất ?

c. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất ?

Giải

a. Ta giải phương trình \(d(t) = 12\) với \(t \in\mathbb Z\) và \(0 < t ≤ 365\)

Ta có \(d(t) = 12 \Leftrightarrow \sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] = 0 \Leftrightarrow {\pi \over {182}}\left( {t - 80} \right) = k\pi \)

\( \Leftrightarrow t = 182k + 80\,\left( {\,k \in\mathbb Z} \right)\)                          

Ta lại có  

\(0 < 182k + 80 \le 365 \Leftrightarrow - {{80} \over {182}} < k \le {{285} \over {182}} \Leftrightarrow \left[ {\matrix{{k = 0} \cr {k = 1} \cr} } \right.\)

Vậy thành phố \(A\) có đúng \(12\) giờ ánh sáng mặt trời vào ngày thứ \(80\) (ứng với \(k = 0\)) và ngày thứ \(262\) (ứng với \(k = 1\)) trong năm.

b. Do \(\sin x ≥ -1\) với mọi \(x\) nên thành phố \(A\) có ít giờ ánh sáng mặt trời nhất khi và chỉ khi :

\(\sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] = - 1\,\text{ với }\,t \in \mathbb Z\,\text { và }\,0 < t \le 365\) 

Phương trình đó cho ta  

\({\pi \over {182}}\left( {t - 80} \right) = - {\pi \over 2} + k2\pi \) 

\( \Leftrightarrow t = 364k - 11\,\left( {\,k \in\mathbb Z} \right)\)

Mặt khác,\(0 < 364k - 11 \le 365 \Leftrightarrow {{11} \over {364}} < k \le {{376} \over {364}} \Leftrightarrow k = 1\) (do \(k\) nguyên)

Vậy thành phố \(A\) có ít giờ ánh sáng mặt trời nhất (\(9\) giờ) khi \(t = 353\), tức là vào ngày thứ \(353\) trong năm.

c. Tương tự, ta phải giải phương trình :

\(\eqalign{
& \sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] = 1\,\text{ với }\,t \in\mathbb Z\,\text{ và }\,0 < t \le 365 \cr
& \Leftrightarrow {\pi \over {182}}\left( {t - 80} \right) = {\pi \over 2} + k2\pi \Leftrightarrow t = 364k + 171 \cr
& 0 < 364k + 171 \le 365 \Leftrightarrow - {{171} \over {364}} < k \le {{194} \over {364}} \Leftrightarrow k = 0 \cr} \) 

Vậy thành phố \(A\) có nhiều giờ có ánh sáng mặt trời nhất (\(15\) giờ) vào ngày thứ \(171\) trong năm.

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật