Giải bài 5 trang 121 SGK Giải tích 12
Giải bài 5 trang 121 SGK Giải tích 12. Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox.Tính thể tích của khối tròn xoay.
- Bài học cùng chủ đề:
- Lý thuyết ứng dụng tích phân trong hình học
- Ngữ pháp tiếng anh hay nhất
Đề bài
Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt \(\widehat {POM} = \alpha \)
và \(OM = R\), \(\left( {0 \le \alpha \le {\pi \over 3},R > 0} \right)\)
Gọi
a) Hình phẳng cần tính thể tích được giới hạn bởi đoạn thẳng \(OM, \, \, MP\) và trục hoành.
+) Xác định phương trình đường thẳng \(OM\) và sử dụng công thức tính thể tích để tính thể tích khối tròn xoay cần tính.
b) Tính được thể tích của khối tròn xoay theo \(\alpha.\) Khảo sát hàm số \(V=V(\alpha)\) để tìm thể tích lớn nhất.
Lời giải chi tiết
a) Ta có: \(\left\{ \begin{array}{l}{x_M} = OP = R\cos \alpha \\{y_M} = PM = R\sin \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}R = \frac{{{x_M}}}{{\cos \alpha }}\\{y_M} = \frac{{{x_M}}}{{\cos \alpha }}.\sin \alpha \end{array} \right. \Rightarrow {y_M} = x_M \tan \alpha .\)
\( \Rightarrow \) Phương trình đường thẳng \(OM\) là: \(y=x.\ tan \alpha .\)
Khi đó thể tích của khối tròn xoay là:
\(\begin{array}{l}V = \pi \int\limits_0^{R\cos \alpha } {{x^2}{{\tan }^2}\alpha dx} = \left. {\pi {{\tan }^2}\alpha .\frac{{{x^3}}}{3}} \right|_0^{R\cos \alpha }\\\;\;\; = \frac{{\pi {R^3}}}{3}.{\tan ^2}\alpha .{\cos ^3}\alpha = \frac{{\pi {R^3}}}{3}.{\sin ^2}\alpha .\cos \alpha \\\;\;\; = \frac{{\pi {R^3}}}{3}.\cos \alpha \left( {1 - {{\cos }^2}\alpha } \right) = \frac{{\pi {R^3}}}{3}\left( {\cos \alpha - {{\cos }^3}\alpha } \right).\;\;\left( {dvtt} \right).\end{array}\)
b) Xét hàm số: \(V (\alpha) = \frac{{\pi {R^3}}}{3}\left( {\cos \alpha - co{s^3}\alpha } \right).\)
Đặt \( t = \cos \alpha .\)
Với \(\alpha \in \left[ {0;\frac{\pi }{3}} \right] \Rightarrow t \in \left[ {0;\frac{1}{2}} \right].\)
Khi đó ta xét hàm: \(V\left( t \right) = \frac{{\pi {R^3}}}{3}\left( {t - {t^3}} \right)\) trên \(\left[ {0;\;\frac{1}{2}} \right].\)
Có: \(V'\left( t \right) = \frac{{\pi {R^3}}}{3}\left( {1 - 3{t^2}} \right) \Rightarrow V'\left( t \right) = 0\)
\( \Leftrightarrow 1 - 3{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{{\sqrt 3 }}{3}\;\;\left( {tm} \right)\\t = - \frac{{\sqrt 3 }}{3}\;\;\left( {ktm} \right)\end{array} \right..\)
Ta có bảng biến thiên:
\( \Rightarrow \) Hàm số đạt giá trị lớn nhất khi \(t = \frac{{\sqrt 3 }}{3} \Rightarrow \cos \alpha = \frac{{\sqrt 3 }}{3} \Leftrightarrow \alpha = \arccos \frac{{\sqrt 3 }}{3} \Leftrightarrow \alpha = \arccos \frac{{\sqrt 3 }}{3}.\)
Vậy thể tích khối lớn nhất khi \(\alpha = \arccos \frac{{\sqrt 3 }}{3}.\)