Giải bài 4 trang 18 SGK Hình học 12
Giải bài 4 trang 18 SGK Hình học 12. Cho hình bát diện đều ABCDEF:
- Bài học cùng chủ đề:
- Lý thuyết khối đa diện lồi và khối đa diện đều
- Ngữ pháp tiếng anh hay nhất
Đề bài
Cho hình bát diện đều \(ABCDEF\)
+) Sử dụng tính chất của mặt phẳng trung trực.
+) Dấu hiệu nhân biết hình vuông: Hình thoi có hai đường chéo bằng nhau là hình vuông.
Lời giải chi tiết
a) Do \(B, C, D, E\) cách đều \(A\) và \(F\) nên chúng đồng phẳng (cùng thuộc mặt phẳng trung trực của \(AF\)).
Tương tự, \(A, B, F, D\) đồng phẳng và \(A, C, F, E\) đồng phẳng
Gọi \(I\) là giao của \((AF)\) với \((BCDE)\). Khi đó \(B, I, D\) là những điểm chung của hai mặt phẳng \((BCDE)\) và \((ABFD)\) nên chúng thẳng hàng. Tương tự, \(E, I , C\) thẳng hàng.
Vậy \(AF, BD, CE\) đồng quy tại \(I\).
Vì \(BCDE\) là hình thoi nên \(EC\) vuông góc với \(BC\) và cắt \(BC\) tại \(I\) là trung điểm của mỗi đường. \(I\) là trung điểm của \(AF\) và \(AF\) vuông góc với \(BD\) và \(EC\), do đó các đoạn thẳng \(AF, BD\), và \(CE\) đôi một vuông góc với nhau cắt nhau tại trung điểm của chúng.
b) Ta có tứ giác \(DCDE\) là hình thoi.
Do \(AI\) vuông góc \((BCDE)\) và \(AB = AC =AD = AE\) nên \(IB = IC= ID = IE\).
Từ đó suy ra hình thoi \(BCDE\) là hình vuông. Tương tự \(ABFD, AEFC\) là những hình vuông.