Giải bài 7 trang 157 sách giáo khoa Đại số và Giải tích 11

7. Một vật rơi tự do theo phương trình

Bài 7. Một vật rơi tự do theo phương trình \(s = {1 \over 2}g{t^2}\) , trong đó \(g ≈ 9,8\) m/s2 là gia tốc trọng trường.

a) Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến \(t + ∆t\), trong các trường hợp \(∆t = 0,1s; ∆t = 0,05s; ∆t = 0,001s\).

b) Tìm vận tốc tức thời của chuyển động tại thời điểm \(t = 5s\).

Giải:

a) Vận tốc trung bình của chuyển động trong khoảng thời gian từ \(t\) đến \(t + ∆t\) là 

\(V_{tb}=  \frac{s\left ( t+\Delta t \right )-s\left ( t \right )}{\Delta t}=   \frac{\frac{1}{2}g\cdot \left ( t+\Delta t \right )^{2}-\frac{1}{2}g\cdot t^{2}}{\Delta t} ={1 \over 2}g(2t + \Delta t) \approx 4,9.(2t + \Delta t)\)

Với \( t=5\) và

 +) \(∆t = 0,1\) thì \(v_{tb}≈ 4,9. (10 + 0,1) ≈ 49,49 m/s\);

 +) \(∆t = 0,05\) thì \(v_{tb}≈ 4,9. (10 + 0,05) ≈ 49,245 m/s\);

 +) \(∆t = 0,001\) thì \(v_{tb} ≈ 4,9. (10 + 0,001) ≈ 49,005 m/s\).

b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5s\) tương ứng với \(∆t = 0\) nên \(v ≈ 4,9 . 10 = 49 m/s\).

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật