Giải bài 6 trang 156 sách giáo khoa Đại số và Giải tích 11

6. Viết phương trình tiếp tuyến của đường hypebol

Bài 6. Viết phương trình tiếp tuyến của đường hypebol \(y =  \frac{1}{x}\):

a) Tại điểm \((  \frac{1}{2} ; 2)\)

b) Tại điểm có hoành độ bằng \(-1\);

c) Biết rằng hệ số góc của tiếp tuyến bằng -\( \frac{1}{4}\).

Giải:

Bằng định nghĩa ta tính được \(y' = - \frac{1}{x^{2}}\).

a) \(y'  \left ( \frac{1}{2} \right )= -4\). Do đó hệ số góc của tiếp tuyến bằng \(-4\). Vậy phương trình tiếp tuyến của hypebol tại điểm \((  \frac{1}{2} ; 2)\) là \(y - 2 = -4(x -  \frac{1}{2})\) hay \(y = -4x + 4\).

b) \(y' (-1) = -1\). Do đó hệ số góc của tiếp tuyến bằng \(-1\). Ngoài ra, ta có \(y(-1) = -1\). Vậy phương trình tiếp tuyến tại điểm có tọa độ là \(-1\) là \(y - (-1) = -[x - (-1)]\) hay \(y = -x - 2\).

c) Gọi \(x_0\) là hoành độ tiếp điểm. Ta có

\(y' (x_0) = -  \frac{1}{4} \Leftrightarrow -  \frac{1}{x_{0}^{2}} = -  \frac{1}{4}\)\(\Leftrightarrow x_{0}^{2} = 4 \Leftrightarrow x_{0}=  ±2\).

Với \(x_{0}= 2\) ta có \(y(2) =  \frac{1}{2}\), phương trình tiếp tuyến là

     \(y -  \frac{1}{2} = - \frac{1}{4}(x - 2)\) hay \(y =  \frac{1}{4}x + 1\).

Với \(x_{0} = -2\) ta có \(y (-2) = - \frac{1}{2}\), phương trình tiếp tuyến là

    \(y -  \left ( -\frac{1}{2} \right ) = - \frac{1}{4}[x - (-2)]\) hay \(y = -  \frac{1}{4}x -1\)

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật