Giải bài 5 trang 156 sách giáo khoa Đại số và Giải tích 11

5. Viết phương trình tiếp tuyến của đường cong

Bài 5. Viết phương trình tiếp tuyến của đường cong \(y = x^3\):

a) Tại điểm có tọa độ \((-1;-1)\);

b) Tại điểm có hoành độ bằng \(2\);

c) Biết hệ số góc của tiếp tuyến bằng \(3\).

Giải:

Bằng định nghĩa ta tính được \(y' = 3x^2\).

a) \(y' (-1) = 3\). Do đó hệ số góc của tiếp tuyến bằng \(3\). Vậy phương trình tiếp tuyến tại điểm \((-1;-1)\) là \(y - (-1) = 3[x - (-1)]\) hay \(y = 3x+2\).

b) \(y' (2) = 12\). Do đó hệ số góc của tiếp tuyến bằng \(12\). Ngoài ra ta có \(y(2) = 8\). Vậy phương trình tiếp tuyến tại điểm có hoành độ bằng \(2\) là: \( y - 8 = 12(x - 2)\)

hay \(y = 12x -16\).

c) Gọi \(x_0\) là hoành độ tiếp điểm. Ta có: 

\(y' (x_0) = 3 \Leftrightarrow 3{x_0}^2= 3\Leftrightarrow {x_0}^2= 1\Leftrightarrow x_0= ±1\).

+) Với \(x_0= 1\) ta có \(y(1) = 1\), phương trình tiếp tuyến là

  \( y - 1 = 3(x - 1)\) hay \(y = 3x - 2\).

+) Với \(x_0= -1\) ta có \(y(-1) = -1\), phương trình tiếp tuyến là

  \(y - (-1) = 3[x - (-1)]\) hay \(y =  3x + 2\).

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật