Giải câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Các số x + 6y, 5x + 2y, 8x + y
- Bài học cùng chủ đề:
- Câu 40 trang 122 SGK Đại số và Giải tích 11 Nâng cao
- Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng cao
- Câu 42 trang 122 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 39. Các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng ; đồng thời, các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.
Giải:
Vì các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng nên :
\(2\left( {5x + 2y} \right) = \left( {x + 6y} \right) + \left( {8x + y} \right) \Leftrightarrow x = 3y\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Vì các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân nên :
\({\left( {y + 2} \right)^2} = \left( {x - 1} \right)\left( {x - 3y} \right)\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Thế (1) vào (2), ta được \({\left( {y + 2} \right)^2} = 0 \Leftrightarrow y = - 2.\) Từ đó \(x = -6\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học