Lý Thuyết Phép Tịnh Tiến
Phép tịnh tiến biến đường thẳng thành đường thằng song song hoặc trùng nhau với nó, biến đoạn thằng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.
1. Trong mặt phẳng có vectơ \(\vec{v}\) . Phép biến hình biến mỗi đểm M thành điểm M' sao cho \(\overrightarrow{MM'}\) = \(\vec{v}\) được gọi là phép tịnh tiến theo vectơ \(\vec{v}\).
Phép tịnh tiến theo vectơ \(\vec{v}\) thường được kí hiệu là \(T_{\vec{v}}\), \(\vec{v}\) được gọi là vectơ tịnh tiến
Như vậy: \(T_{\vec{v}}\)(M) = M' ⇔ \(\overrightarrow{MM'}\) = \(\vec{v}\)
2. Nếu \(T_{\vec{v}}\) (M) = M', \(T_{\vec{v}}\)(N) = N' thì \(\overrightarrow{M'N'}\) = \(\overrightarrow{MN}\) từ đó suy ra MN = M'N'. Như vậy phép tịnh tiến là một phép biến hình bảo tồn khoảng cách
3. Phép tịnh tiến biến đường thẳng thành đường thằng song song hoặc trùng nhau với nó, biến đoạn thằng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.
4. Biểu thức tọa độ của phép tịnh tiến: Cho vectơ \(\vec{v}\) \((a;b)\) và hai điểm \(M(x;y), M' (x'; y')\). Khi đó:
M' = \(T_{\vec{v}}\) (M) ⇔ \(\left\{\begin{matrix} {x}'= x + a\\ {y}'= y + b \end{matrix}\right.\)
Trên đây là bài học "Lý Thuyết Phép Tịnh Tiến" mà dayhoctot.com muốn gửi tới các em. Để rèn luyện về kỹ năng làm bài thi và kiểm tra các em tham khảo tại chuyên mục "Đề thi học kì 1 lớp 11" nhé.
Nếu thấy hay, hãy chia sẻ tới bạn bè để cùng học và tham khảo nhé! Và đừng quên xem đầy đủ các bài Giải bài tập Toán Lớp 11 của dayhoctot.com.
Các bài học liên quan
Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì. Nghĩa là với hai điểm M, N tùy ý và ảnh M', N' tương ứng của chúng, ta luôn có M'N'=MN
Phép vị tự biến tâm vị tự thành chính nó Khi k=1, phép vị tự là phép đồng nhất Khi k = -1, phép vị tự là phép đối xứng qua tâm vị tự
Phép biến hình f được gọi là phép đồng dạng tỉ số k, (k>0), nếu với hai điểm M, N bất kì và ảnh M', N' tương ứng của chúng, ta luôn có M'N' = kMN
Hình biểu diễn của hình lập phương và hình tứ diện ( h.2.3)
Qua ba điểm không thẳng hàng xác định một mặt phẳng duy nhất. Mặt phẳng đi qua ba điểm không thẳng hàng A, B, C được kí hiệu là mp(ABC) hay (ABC)
- Điểm, đường thẳng, mặt phẳng là các khái niệm không định nghĩa- Trang giấy, mặt bảng đen, mặt hồ lặng gió, mặt bàn... cho ta hình ảnh một phần của mặt phẳng
Tính chất 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt
Các chương học và chủ đề lớn
Học tốt các môn khác lớp 11