Lý thuyết Đạo hàm cấp hai

1. Định nghĩa

1. Định nghĩa

Giả sử hàm số \(f(x)\) có đạo hàm  \(f'(x)\). Nếu \(f'(x)\) cũng có đạo hàm thì ta gọi đạo hàm của nó là đạo hàm cấp hai của \(f(x)\) và kí hiệu \(f"(x)\): \((f'(x))' = f"(x)\) .

Tương tự: \((f''(x))' = f"'(x)\) hoặc \(f^{(3)}(x)\)

               ...

              \(\left({f^{(n-1)}}\left( x \right)\right)' = {f^{(n)}}\left( x \right )\), \(n\in {\mathbb N}^*\), \(n ≥ 4\).

Ở đây kí hiệu \({f^{(0)}}\left( x \right)= f\left( x \right)\); \({f^{(n)}}\left( x \right)\) là đạo hàm cấp \(n\) của hàm số \(f(x)\).

2. Ý nghĩa cơ học của đạo hàm cấp hai

Đạo hàm cấp hai \(f"(t)\) là gia tốc tức thời của chuyển động \(s = f(t)\) tại thởi điểm \(t\). 

Các bài học liên quan
Lý Thuyết Phép Quay
Lý Thuyết Phép Vị Tự
Lý Thuyết Phép Đồng Dạng
Lý thuyết Khái niệm mở đầu

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật