Giải câu 16 trang 103 SGK Hình học 11 Nâng cao
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.
- Bài học cùng chủ đề:
- Câu 17 trang 103 SGK Hình học 11 Nâng cao
- Câu 18 trang 103 SGK Hình học 11 Nâng cao
- Câu 19 trang 103 SGK Hình học 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.
a. Tính độ dài AD.
b. Chỉ ra điểm cách đều A, B, C, D
c. Tính góc giữa đường thẳng AD và mặt phẳng (BCD), góc giữa đường thẳng AD và mặt phẳng (ABC).
Giải
a. Ta có: CD ⊥ BC và CD ⊥ AB nên CD ⊥ (ABC)
mà AC ⊂ (ABC) do đó CD ⊥ AC.
Trong tam giác vuông ABC ta có :
\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2}\)
Trong tam giác vuông ACD ta có :
\(A{D^2} = A{C^2} + C{D^2} = {a^2} + {b^2} + {c^2}\)
Suy ra : \(AD = \sqrt {{a^2} + {b^2} + {c^2}} \)
b. Ta có : \(AB \bot BC\,va\,AB \bot CD\) suy ra AB ⊥ (BCD) do đó AB ⊥ BD.
Gọi I là trung điểm AD ta có IC = IA = IB = ID.
Vậy I cách đều A, B, C, D
dayhoctot.com
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học