Giải câu 17 trang 103 SGK Hình học 11 Nâng cao
Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.
- Bài học cùng chủ đề:
- Câu 18 trang 103 SGK Hình học 11 Nâng cao
- Câu 19 trang 103 SGK Hình học 11 Nâng cao
- Câu 20 trang 103 SGK Hình học 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.
a. Chứng minh tam giác ABC có ba góc nhọn.
b. Chứng minh rằng hình chiếu H của điểm O trên mp(ABC) trùng với trực tâm tam giác ABC.
c. Chứng minh rằng \({1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)
Giải
a. Đặt a = OA, b = OB, c = OC. Ta có:
\(AB = \sqrt {{a^2} + {b^2}} ,BC = \sqrt {{b^2} + {c^2}} ,AC = \sqrt {{a^2} + {c^2}} \)
Áp dụng định lí cosin trong tam giác ABC ta có :
\(\cos A = {{A{B^2} + A{C^2} - B{C^2}} \over {AB.AC}} = {{{a^2} + {b^2} + {a^2} + {c^2} - {b^2} - {c^2}} \over {AB.AC}} = {{2{a^2}} \over {AB.AC}} > 0\)
⇒ A nhọn. Tương tự B, C là các góc nhọn.
Vậy ΔABC có ba góc nhọn.
b.
Vì H là hình chiếu của điểm O trên mp(ABC)
nên OH ⊥ (ABC)
Mặt khác OA ⊥ (OBC) nên OA ⊥ BC.
Vậy AH ⊥ BC (định lí ba đường vuông góc), tức
là H thuộc một đường cao của tam giác ABC
Tương tự như trên ta cũng có H thuộc đường cao
thứ hai của tam giác ABC.
Vậy H là trực tâm tam giác ABC
c. Nếu AH ⊥ BC tại A’ thì BC ⊥ OA’.
Vì OH là đường cao của tam giác vuông AOA’ (vuông tại O) và OA’ là đường cao của tam giác vuông BOC (vuông tại O) nên :
\({1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {OA{'^2}}},{1 \over {OA{'^2}}} = {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)
Vậy \({1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học