Giải câu 25 trang 112 SGK Hình học 11 Nâng cao

Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến Δ. Lấy A, B cùng thuộc Δ và lấy C ϵ (P), D ϵ (Q) sao cho AC ⊥ AB, BD ⊥ AB và AB = AC = BD. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (α) đi qua điểm A và vuông góc với CD. Tính diện tích thiết diện khi AC = AB = BD = a.

Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến Δ. Lấy A, B cùng thuộc Δ và lấy C ϵ (P), D ϵ (Q) sao cho AC ⊥ AB, BD ⊥ AB và AB = AC = BD. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (α) đi qua điểm A và vuông góc với CD. Tính diện tích thiết diện khi AC = AB = BD = a.

Giải

Gọi I là trung điểm của BC thì AI ⊥ BC. Do BD ⊥ mp(ABC) nên AI ⊥ CD (định lí ba đường vuông góc).

Trong mp(CDB), kẻ IJ vuông góc với CD (J ϵ CD) thì mp(AIJ) chính là mặt phẳng (α) và thiết diện phải tìm là tam giác AIJ

Tam giác AIJ là tam giác vuông tại I.

Vậy \({S_{AIJ}} = {1 \over 2}AI.IJ\)

Ta có:

\(\eqalign{  & AI = {1 \over 2}BC = {{a\sqrt 2 } \over 2}  \cr  & {{IJ} \over {DB}} = {{CI} \over {CD}} \Rightarrow IJ = {{CI} \over {CD}}.DB = {{{{a\sqrt 2 } \over 2}} \over {a\sqrt 3 }}.a = {{a\sqrt 6 } \over 6} \cr} \)

Vậy \({S_{AIJ}} = {1 \over 2}.{{a\sqrt 2 } \over 2}.{{a\sqrt 6 } \over 6} = {{{a^2}\sqrt 3 } \over {12}}\)

Các bài học liên quan
Câu 30 trang 117 SGK Hình học 11 Nâng cao
Câu 32 trang 117 SGK Hình học 11 Nâng cao
Câu 35 trang 118 SGK Hình học 11 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật