Lý thuyết đường tiệm cận

Cho hàm số y = f(x) có đồ thị (C).

Cho hàm số \(y = f(x)\) có đồ thị \((C)\).

1. Tiệm cận đứng

Đường thẳng \(x=a\) là đường tiệm cận đứng của \((C)\) nếu một trong bốn điêù kiện sau được thoả mãn :

\(\eqalign{
& \mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \cr
& \mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \cr} \)

2. Tiệm cận ngang 

Đường thẳng \(y = b\) là tiệm cận ngang của \((C)\) nếu :                 

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f(x) = b \cr
& \mathop {\lim }\limits_{x \to - \infty } f(x) = b \cr} \)

3. Chú ý

- Đồ thị hàm đa thức không có tiệm cận đứng và tiệm cận ngang, do đó trong các bài toán khảo sát và vẽ đồ thị hàm đa thức, ta không cần tìm các tiệm cận này.

Các bài học liên quan
Lý thuyết lôgarit
Lí thuyết nguyên hàm
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật