Giải câu 4 trang 76 SGK Đại số và giải tích 11
Có bao nhiêu số chẵn có 4 chữ số được tạo thành từ các số 0, 1, 2, 3, 4, 5, 6 sao cho:
- Bài học cùng chủ đề:
- Câu 5 trang 76 SGK Đại số và giải tích 11
- Câu 6 trang 76 SGK Đại số và giải tích 11
- Câu 7 trang 77 SGK Đại số và giải tích 11
- Ngữ pháp tiếng anh hay nhất
Bài 4. Có bao nhiêu số chẵn có \(4\) chữ số được tạo thành từ các số \(0, 1, 2, 3, 4, 5, 6\) sao cho:
a) Các chữ số có thể giống nhau
b) Các chữ số khác nhau.
Trả lời:
Tập hợp \(A = \left\{{0, 1, 2, 3, 4, 5, 6}\right\}\)
a) Gọi số có \(4\) chữ số tạo thành là \(\overline {abcd} \)
Ta có: \(\overline {abcd} \) chẵn nên:
Số
\(\overline {abcd} \left\{ \matrix{
a,b,c,d \in A \hfill \cr
a \ne 0 \hfill \cr
d \in \left\{ {0,2,4,6} \right\} \hfill \cr} \right.\)
+) Có \(4\) cách để chọn \(d\)
+) \(a ≠ 0\) ⇒ có \(6\) cách chọn \(a\)
+) Có \(7\) cách chọn \(b\) và \(7\) cách chọn \(c\)
Vậy : \(4.6.7.7 = 1176\) số chẵn \(\overline {abcd} \) trong đó, các chữ số có thể giống nhau
b) Gọi \(\overline {abcd} \) là số cần tìm
Trường hợp 1: \(\overline {abc0} (d = 0)\)
Vì \(a, b, c\) đôi một khác nhau và khác \(d\) nên có \(A_6^3\) số \(\overline {abc0} \)
Vậy có \(A_6^3\) số \(\overline {abc0} \)
Trường hợp 2: \(\overline {abcd} \) (với \(d ≠ 0\))
+) \(d ∈ \left\{{2, 4, 6}\right\}\) \(⇒\) có \(3\) cách chọn \(d\)
+) \(a ≠ 0, a ≠ d\) nên có \(5\) cách chọn \(a\)
+) \(b ≠ a, b ≠ d\) nên có \(5\) cách chọn \(b\)
+) \(c ≠ a, b, d\) nên có \(4\) cách chọn \(c\)
\(⇒\) Có \(3. 5. 5. 4 = 300\) số \(\overline {abcd} \) loại 2
Vậy có: \(A_6^3 + 300 = 420\) số \(\overline {abcd} \) thỏa mãn yêu cầu của đề bài.