Giải bài 6 trang 119 sgk Hình học 11

Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD...

Bài 6. Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh \(AB\) và \(CD\) của tứ diện \(ABCD\) là đường vuông góc chung của \(AB\) và \(CD\) thì \(AC = BD\) và \(AD = BC\).

Giải

(H.3.67) 

Qua \(I\) kẻ đường thẳng \(d // CD\), lấy trên \(d\) điểm \(E, F\) sao cho \(IE = IF = \frac{CD}{2}\) (\(I\) là trung điểm của \(EF\)). \(IJ\) vuông góc với \(CD\) \(\Rightarrow IJ\) vuông góc với \(EF\), mà \(IJ\) cũng vuông góc với \(AB\Rightarrow IJ \bot (AEBF)\).

Ta có \(CDFE\) là hình bình hành có \(IJ\) là đường trung bình

Do đó \(CE\) và \(DF\) cùng song song với \(IJ\) 

Suy ra \(CE\) và \(DF\) cùng vuông góc với mp \((AEBF)\) 

 \(\Rightarrow DF ⊥ AF, CE ⊥ IE\).

\(\Delta AIF = \Delta BIE(c.g.c)\) suy ra: \(AF=BE\)

Xét \(∆DFA\) và \(∆CEB\) có:

  +) \(\widehat E = \widehat F( = {90^0})\) 

  +) \(AF=BE\)

  +) \(DF=CE\)

\(\Rightarrow ∆DFA=∆CEB(c.g.c)\)

\(\Rightarrow AD = BC\). 

Chứng minh tương tự ta được \(BD = AC\).

 

Các bài học liên quan
Câu 4 trang 120 SGK Hình học 11

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật