Giải bài 3 trang 33 sách giáo khoa hình học lớp 11

Trong mặt phẳng Oxy cho điểm I (1;1) và đường trong tâm I bán kính 2. Viết phương trình của đường trong là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O

Bài 3. Trong mặt phẳng \(Oxy\) cho điểm \(I (1;1)\) và đường trong tâm \(I\) bán kính \(2\). Viết phương trình của đường trong là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm \(O\), góc \( 45^{\circ}\) và phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\).

Lời giải:

Phép quay tâm \(O\), góc \( 45^{\circ}\), biến \(I\) thành \(I'(0\);\( \sqrt{2}\)), phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\) biến \(I'\) thành \(I'' = (0; \)\( \sqrt{2}.\)\( \sqrt{2}\)) \(= (0;2)\). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm \(O\), góc \( 45^{\circ}\) và phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\) biến đường tròn \((I;2)\) thành đường tròn \((I'';2\)\( \sqrt{2}\)). Phương trình của đường tròn đó là

\(x^{2}\) + \((y-2)^{2} = 8\).

Các bài học liên quan
Bài 3 trang 34 sách giáo khoa hình học lớp 11
Bài 5 trang 35 sách giáo khoa hình học lớp 11
Bài 6 trang 35 sách giáo khoa hình học lớp 11

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật