Giải câu 21 trang 151 SGK Đại số và Giải tích 11 Nâng cao

Áp dụng định nghĩa giới hạn

Bài 21. Áp dụng định nghĩa giới hạn của hàm số, tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3x - 4} \over {x + 1}}\)

b.  \(\mathop {\lim }\limits_{x \to 1} {1 \over {\sqrt {5 - x} }}\)

Giải:

a. Với \(x ≠ -1\) ta có  \(f\left( x \right) = {{{x^2} - 3x - 4} \over {x + 1}} = {{\left( {x + 1} \right)\left( {x - 4} \right)} \over {x + 1}} = x - 4\)

Với mọi dãy số (xn) trong khoảng \(\mathbb R\backslash \left\{ { - 1} \right\}\) (tức \(x_n≠ -1, ∀n\)) mà \(\lim\, x_n = -1\) ta có :

\(\lim f\left( x_n \right) = \lim \left( {{x_n} - 4} \right) = - 1 - 4 = - 5\)

Vậy  \(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3x - 4} \over {x + 1}} = - 5\)

b. Tập xác định của hàm số \(f\left( x \right) = {1 \over {\sqrt {5 - x} }}\) là \(D = (-∞ ; 5)\)

Với mọi dãy (xn) trong khoảng \(\left( { - \infty {\rm{ }};{\rm{ }}5} \right)\backslash \left\{ 1 \right\}\) sao cho  \(\lim\, x_n = 1\), ta có :

\(\lim f\left( {{x_n}} \right) = \lim {1 \over {\sqrt {5 - {x_n}} }} = {1 \over 2}\)

Vậy  \(\mathop {\lim }\limits_{x \to 1}  {1 \over {\sqrt {5 - x} }} = {1 \over 2}\)

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật