Giải câu 25 trang 152 SGK Đại số và Giải tích 11 Nâng cao
Tìm các giới hạn sau:
Bài 25. Tìm các giới hạn sau :
a. \(\mathop {\lim }\limits_{x \to - \infty } \root 3 \of {{{{x^2} + 2x} \over {8{x^2} - x + 3}}} \)
b. \(\mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2} - x + 2}}\)
Giải
a. Ta có:
\(\mathop {\lim }\limits_{x \to - \infty } \root 3 \of {{{{x^2} + 2x} \over {8{x^2} - x + 3}}} = \mathop {\lim }\limits_{x \to - \infty } \root 3 \of {{{1 + {2 \over x}} \over {8 - {1 \over x} + {3 \over {{x^2}}}}}} = {1 \over 2}\)
b.
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2} - x + 2}} = \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2}\left( {1 - {1 \over x} + {2 \over {{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt x \left( {1 - {1 \over x} + {2 \over {{x^2}}}} \right)}} = 0 \cr
& \text{vì}\;\mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt x }} = 0\;\text{và}\;\mathop {\lim }\limits_{x \to + \infty } {1 \over {1 - {1 \over x} + {2 \over {{x^2}}}}} = 1 \cr} \)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học