Giải câu 12 trang 142 SGK Đại số và Giải tích 11 Nâng cao

Tìm giới hạn của các dãy số (un) với

Bài 12. Tìm giới hạn của các dãy số (un) với

a.  \({u_n} = {{ - 2{n^3} + 3n - 2} \over {3n - 2}}\)

b.  \({u_n} = {{\root 3 \of {{n^6} - 7{n^3} - 5n + 8} } \over {n + 12}}\)

Giải:

a. Ta có:

\({u_n} = {{{n^3}\left( { - 2 + {3 \over {{n^2}}} - {2 \over {{n^3}}}} \right)} \over {{n^3}\left( {{3 \over {{n^2}}} - {2 \over {{n^3}}}} \right)}} = {{ - 2 + {3 \over {{n^2}}} - {2 \over {{n^3}}}} \over {{3 \over {{n^2}}} - {2 \over {{n^3}}}}}\)

Vì  \(\lim \left( { - 2 + {3 \over {{n^2}}} - {2 \over {{n^2}}}} \right) = - 2 < 0\)

Và  \(\lim \left( {{3 \over {{n^2}}} - {2 \over {{n^3}}}} \right) = 0;\)

Nên  \(\lim {u_n} = - \infty \)

b. Chia tử và mẫu của phân thức cho n, ta được :

\(\eqalign{
& {u_n} = {{n\root 3 \of {1 - {7 \over {{n^3}}} - {5 \over {{n^5}}} + {8 \over n^6}} } \over {1 + {{12} \over n}}} \cr
& \text{ Vì }\,\lim n\root 3 \of {1 - {7 \over {{n^3}}} - {5 \over {{n^5}}} + {8 \over n^6}} = + \infty \cr
& \text{ và }\,\lim \left( {1 + {{12} \over n}} \right) = 1 > 0 \cr
& \text{ nên }\,{{\mathop{\rm lim u}\nolimits} _n} = + \infty \cr} \)

 dayhoctot.com

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật