Giải câu 14 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Chứng minh rằng
- Bài học cùng chủ đề:
- Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao
- Câu 16 trang 143 SGK Đại số và Giải tích 11 Nâng cao
- Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 14. Chứng minh rằng nếu \(q > 1\) thì \(\lim {q^n} = + \infty .\)
Giải:
Ta có:
\(\lim {\left( {{1 \over q}} \right)^n} = 0\,\left( {do\,q > 1} \right)\text{ mà }q > 0\text{ nên }\lim {q^n} = + \infty \)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học