Giải câu 6 trang 126 SGK Hình học 11
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.
- Bài học cùng chủ đề:
- Câu 7 trang 126 SGK Hình học 11
- Ngữ pháp tiếng anh hay nhất
Bài 6. Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\).
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau \(BD'\) và \(B'C\).
b)Tính khoảng cách của hai đường thẳng \(BD'\) và \(B'C\)
Giải
a) \(AB ⊥ (BCC’B’) ⇒ AB ⊥ B’C\)
\(BCC’B’\) là hình vuông có \(BC’ ⊥ B’C\)
\(⇒ B’C ⊥ (ABC’D’)\) và \(BD' ⊂ (ABC’D’)\)
Trong mặt phẳng \((ABC’D’)\) ta kẻ \(IK ⊥ BD’\) vì \(B’C ⊥ (ABC’D’) ⇒ B’C ⊥ IK\)
Kết hợp với \(IK ⊥ BD’ ⇒ IK\) là đường vuông góc chung của \(B’C\) và \(BD’\)
b) Ta tính \(IK\) từ hình chữ nhật \(ABC’D’\) với \(AB = a, BC’ = a\sqrt2, BD’ = a\sqrt3\)
\(∆BIK\) đồng dạng \(∆BD’C’\) ta có:
\(\eqalign{
& \Rightarrow {{IK} \over {D'C'}} = {{BI} \over {B{\rm{D}}'}} \cr
& \Rightarrow IK = {{BI.D'C'} \over {B{\rm{D}}'}} \cr
& IK = {1 \over 6}a\sqrt 6 \cr} \).