Giải bài 1 trang 17 sgk giải tích 11

Bài 1. Hãy xác định các giá trị của x trên đoạn

Bài tập :

Bài 1. Hãy xác định các giá trị của \(x\) trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) để hàm số \(y = tanx\) ;

a) Nhận giá trị bằng \(0\) ;

b) Nhận giá trị bằng \(1\) ;  

c) Nhận giá trị dương ;

d) Nhận giá trị âm.  

Đáp án :

a) trục hoành cắt đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(0\), đó là \(x = - π; x = 0 ; x = π\).

b) Đường thẳng \(y = 1\) cắt đoạn đồ thị \(y = tanx\) (ứng với \(x\in\)\(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ \({\pi  \over 4};{\pi  \over 4} \pm \pi \) . Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(1\), đó là \(x =  - {{3\pi } \over 4};\,\,x = {\pi  \over 4};\,\,x = {{5\pi } \over 4}\).

c) Phần phía trên trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng \(\left( { - \pi ; - {\pi  \over 2}} \right)\); \(\left( {0;{\pi  \over 2}} \right)\); \(\left( {\pi ;{{3\pi } \over 2}} \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị dương là \(x \in \left( { - \pi ; - {\pi  \over 2}} \right) \cup \left( {0;{\pi  \over 2}} \right) \cup \left( {\pi ;{{3\pi } \over 2}} \right)\).

d) Phần phía dưới trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng \(\left( { - {\pi  \over 2};0} \right),\left( {{\pi  \over 2};\pi } \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị âm là \(x \in \left( { - {\pi  \over 2};0} \right),\left( {{\pi  \over 2};\pi } \right)\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật