Giải câu 17 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Tìm hệ số
- Bài học cùng chủ đề:
- Câu 18 trang 67 SGK Đại số và Giải tích 11 Nâng cao
- Câu 19 trang 67 SGK Đại số và Giải tích 11 Nâng cao
- Câu 20 trang 67 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 17. Tìm hệ số của \({x^{101}}{y^{99}}\) trong khai triển \({\left( {2x - 3y} \right)^{200}}\)
Giải:
Ta có:
\({\left( {2x - 3y} \right)^{200}} = \sum\limits_{k = 0}^{200} {C_{200}^k{{\left( {2x} \right)}^{200 - k}}{{\left( { - 3y} \right)}^k}} \)
Số hạng chứa \({x^{101}}{y^{99}}\) ứng với \(k = 99\), đó là : \(C_{200}^{99}.{\left( {2x} \right)^{101}}{\left( { - 3y} \right)^{99}}\)
Vậy hệ số của \({x^{101}}{y^{99}}\) là \(C_{200}^{99}.{\left( {2} \right)^{101}}{\left( { - 3} \right)^{99}}\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học