Giải câu 1 trang 100 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

Bài 1. Chứng minh rằng với mọi số nguyên dương n, ta luôn có đẳng thức sau :

\(1 + 2 + 3 + ... + n = {{n\left( {n + 1} \right)} \over 2}\)   (1)

Giải:

+) Với n = 1 ta có \(1 = {{1\left( {1 + 1} \right)} \over 2}\) (đúng).

Vậy (1) đúng với n = 1

+) Giả sử (1) đúng với \(n = k\), tức là ta có:

\(1 + 2 + 3 + ... + k = {{k\left( {k + 1} \right)} \over 2}\)

Ta chứng minh (1) đúng với \(n = k + 1\) tức là phải chứng minh :

\(1 + 2 + ... + k + \left( {k + 1} \right) = {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2}\)

Thật vậy ta có :

\(\eqalign{
& 1 + 2 + ... + k + \left( {k + 1} \right) \cr
& = {{k\left( {k + 1} \right)} \over 2} + \left( {k + 1} \right) \cr
& = {{k\left( {k + 1} \right) + 2\left( {k + 1} \right)} \over 2} \cr
& = {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2} \cr} \)

Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi n nguyên dương.

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật