Bài 5. Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?
a) \(u_n= 2n^2-1\); b) \( u_n=\frac{1}{n(n+2)}\)
Hướng dẫn giải:
a) Dãy số bị chặn dưới vì \(u_n= 2n^2-1≥ 1\) với mọi \(n \in {\mathbb N}^*\) và không bị chặn trên vì với số \(M\) dương lớn bất kì, ta có \(2n^2-1 > M \Leftrightarrow n > \sqrt{\frac{M+1}{2}}\).
tức là luôn tồn tại \( n ≥ \left [ \sqrt{\frac{M+1}{2}} \right ] + 1\) để \(2 n^{2}- 1 > M\)
b) Dễ thấy \(u_n > 0\) với mọi \(n \in {\mathbb N}^*\)
Mặt khác, vì \(n ≥ 1\) nên \(n^2≥ 1\) và \(2n ≥ 2\).
Do đó \(n(n + 2) = n^2+ 2n ≥ 3\), suy ra \( \frac{1}{n(n+2)}\) \( \leq \frac{1}{3}\).
Vậy dãy số bị chặn \(0 < u_n\) \(\leq \frac{1}{3}\) với mọi \(n \in {\mathbb N}^*\)
c) Vì \(n ≥ 1\) nên \(2n^2- 1 > 0\), suy ra \( \frac{1}{2n^{2}-1} > 0\)
Mặt khác \(n^2 ≥ 1\) nên \(2n^2≥ 2\) hay \(2n^2- 1≥ 1\), suy ra \( u_{n}=\frac{1}{2n^{2}-1} ≤ 1\).
Vậy \(0 < u_n ≤ 1\), với mọi \(n \in {\mathbb N}^*\), tức dãy số bị chặn.
d) Ta có: \(sinn + cosn = \sqrt 2sin(n + \frac{\pi }{4})\), với mọi \(n\). Do đó:
\(-\sqrt2 ≤ sinn + cosn ≤ \sqrt2\) với mọi \(n \in {\mathbb N}^*\)
Vậy \(-\sqrt 2 < u_n< \sqrt 2\), với mọi \(n \in {\mathbb N}^*\).
dayhoctot.com
Trên đây là bài học "Giải bài 5 trang 92 sgk toán 11" mà dayhoctot.com muốn gửi tới các em. Để rèn luyện về kỹ năng làm bài thi và kiểm tra các em tham khảo tại chuyên mục "Đề thi học kì 1 lớp 11" nhé.
Nếu thấy hay, hãy chia sẻ tới bạn bè để cùng học và tham khảo nhé! Và đừng quên xem đầy đủ các bài Giải bài tập Toán Lớp 11 của dayhoctot.com.