Giải bài 5 trang 92 sgk toán 11

Bài 5. Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

Bài 5. Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

a) \(u_n= 2n^2-1\);                     b) \( u_n=\frac{1}{n(n+2)}\)

c) \(u_n= \frac{1}{2n^{2}-1}\);                        d) \(u_n= sinn + cosn\)
Hướng dẫn giải:
a) Dãy số bị chặn dưới vì \(u_n= 2n^2-1≥ 1\) với mọi \(n \in {\mathbb N}^*\)  và không bị chặn trên vì với số \(M\) dương lớn bất kì, ta có \(2n^2-1 > M \Leftrightarrow n > \sqrt{\frac{M+1}{2}}\).
tức là luôn tồn tại \( n ≥   \left [ \sqrt{\frac{M+1}{2}} \right ] + 1\) để  \(2 n^{2}- 1 > M\)
b) Dễ thấy \(u_n > 0\) với mọi \(n \in {\mathbb N}^*\)  
Mặt khác, vì \(n ≥ 1\) nên \(n^2≥ 1\) và \(2n ≥ 2\).
Do đó \(n(n + 2) =  n^2+ 2n ≥ 3\), suy ra \( \frac{1}{n(n+2)}\) \( \leq \frac{1}{3}\).
Vậy dãy số bị chặn \(0 < u_n\) \(\leq \frac{1}{3}\) với mọi  \(n \in {\mathbb N}^*\)  
c) Vì \(n ≥ 1\) nên \(2n^2- 1 > 0\), suy ra \( \frac{1}{2n^{2}-1} > 0\)
Mặt khác \(n^2 ≥ 1\) nên \(2n^2≥ 2\) hay \(2n^2- 1≥ 1\), suy ra \( u_{n}=\frac{1}{2n^{2}-1} ≤ 1\). 
Vậy \(0 < u_n ≤ 1\), với mọi \(n \in {\mathbb N}^*\), tức dãy số bị chặn.
d) Ta có: \(sinn + cosn = \sqrt 2sin(n +  \frac{\pi }{4})\), với mọi \(n\). Do đó:
\(-\sqrt2 ≤ sinn + cosn ≤ \sqrt2\) với mọi \(n \in {\mathbb N}^*\)
Vậy \(-\sqrt 2  < u_n< \sqrt 2\), với mọi \(n \in {\mathbb N}^*\).
 
dayhoctot.com
 
Các bài học liên quan
Bài 4 trang 98 sgk toán 11
Bài 5 trang 98 sgk toán 11
Bài 4 trang 104 sgk toán 11
Bài 5 trang 104 sgk toán 11

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật