Giải bài 4 trang 78 sách giáo khoa hình học lớp 11

Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn nửa đường thẳng Ax, By, Cz, Dt ở cùng phía đối với mặt phẳng (ABCD), song song với nhau và không nằm trong mặt phẳng (ABCD). Một mặt phẳng (β) lần lượt cắt Ax, By, Cz và Dt tại A', B', C' và D'

Bài 4. Cho hình bình hành \(ABCD\). Qua \(A, B, C, D\) lần lượt vẽ bốn nửa đường thẳng \(Ax, By, Cz, Dt\) ở cùng phía đối với mặt phẳng \((ABCD)\), song song với nhau và không nằm trong mặt phẳng \((ABCD)\). Một mặt phẳng \((β)\) lần lượt cắt \(Ax, By, Cz\) và \(Dt\) tại \(A', B', C'\) và \(D'\).

a) Chứng minh mặt phẳng \((Ax, By)\) song song với mặt phẳng \(( Cz, Dt)\)

b) Gọi \(I =  AC ∩ BD, J = A'C' ∩ B'D'\). Chứng minh \(IJ\) song song với \(AA'\)

c) Cho \(AA' = a, BB' = b, CC' = c\). Hãy tính \(DD'\).

Lời giải:

a) \(Ax // Dt\) (giả thiết) và \(AB // CD\) (vì \(ABCD\) là hình bình hành).

Do đó \((Ax, By) // ( Cz, Dt)\)

b) Ta có  \((Ax, By) // ( Cz, Dt)\). Mặt phẳng \((A'B'C'D')\) lần lượt cắt hai mặt phẳng \((Ax, By)\) và \(( Cz, Dt)\) theo giao tuyến \(A'B'\) và \(C'D'\) do đó \(A'B'//C'D'\).

Tương tự ta chứng minh được: \(A'D'//B'C'\)

Do đó \(A'B'C'D'\) là hình bình hành.

\(J=A'C'\cap B'D'\) nên \(J\) là trung điểm của \(A'C'\)

Suy ra \(IJ\) là đường trung bình hình thang \(A'C'CA\) do đó \(Ị\) song song với \(AA'\).

c) Theo tính chất của đường trung bình hình thang ta có:

\(AA'+CC'=2IJ\)

\(BB'+DD'=2IJ\)

Do đó : \(DD'=AA'+CC'-BB'\)

            \(DD' = a + c - b\).

Các bài học liên quan
Bài 9 trang 80 sách giáo khoa hình học 11
Bài 12 trang 80 sách giáo khoa hình học 11

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật