Giải câu 4 trang 91 SGK Hình học 11 Nâng cao

Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của các tứ diện A’D’MN và BCC’D’. Chứng minh rằng đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.

Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của các tứ diện A’D’MN và BCC’D’. Chứng minh rằng đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.

Giải

Đặt \(\overrightarrow {AB}  = \overrightarrow a ,\overrightarrow {AD}  = \overrightarrow b ,\overrightarrow {AA'}  = \overrightarrow c .\)

Vì G’ là trọng tâm tứ diện BCC’D’ nên \(\overrightarrow {AG'}  = {1 \over 4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AC'}  + \overrightarrow {AD'} } \right)\)

Và G là trọng tâm tứ diện A’D’MN nên

\(\eqalign{  & \overrightarrow {AG}  = {1 \over 4}\left( {\overrightarrow {AA'}  + \overrightarrow {AD'}  + \overrightarrow {AM}  + \overrightarrow {AN} } \right)  \cr  &  \Rightarrow \overrightarrow {GG'}  = \overrightarrow {AG'}  - \overrightarrow {AG} \cr& = {1 \over 4}\left( {\overrightarrow {A'B}  + \overrightarrow {D'C}  + \overrightarrow {MC'}  + \overrightarrow {ND'} } \right)  \cr  &  = {1 \over 4}\left( {\overrightarrow a  - \overrightarrow c  + \overrightarrow a  - \overrightarrow c  + {1 \over 2}\overrightarrow a  + \overrightarrow c  + {1 \over 2}\overrightarrow c } \right)  \cr  &  = {1 \over 8}\left( {5\overrightarrow a  - \overrightarrow c } \right) = {1 \over 8}\left( {5\overrightarrow {AB}  - \overrightarrow {AA'} } \right) \cr} \)

Do đó \(\overrightarrow {AB} ,\overrightarrow {AA'} ,\overrightarrow {GG'} \) đồng phẳng. Mặt khác, G không thuộc mặt phẳng (ABB’A’) nên đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.

Các bài học liên quan
Câu 14 trang 102 SGK Hình học 11 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật