Giải câu 3 trang 91 SGK Hình học 11 Nâng cao

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’, I là giao điểm của hai đường thẳng AB’ và A’B. Chứng minh rằng các đường thẳng GI và CG’ song song với nhau.

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’, I là giao điểm của hai đường thẳng AB’ và A’B. Chứng minh rằng các đường thẳng GI và CG’ song song với nhau.

Giải

Đặt \(\overrightarrow {AA'}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AC}  = \overrightarrow c \)

Thì \(\overrightarrow {AG}  = {1 \over 3}\left( {\overrightarrow b  + \overrightarrow c } \right),\overrightarrow {AI}  = {1 \over 2}\left( {\overrightarrow a  + \overrightarrow b } \right)\)

Do đó, \(\overrightarrow {GI}  = \overrightarrow {AI}  - \overrightarrow {AG}  = {{3\overrightarrow a  + \overrightarrow b  - 2\overrightarrow c } \over 6}\)

Mặt khác : \(\overrightarrow {AG'}  = {1 \over 3}\left( {\overrightarrow {AA'}  + \overrightarrow {AB'}  + \overrightarrow {AC'} } \right) = \overrightarrow a  + {1 \over 3}\left( {\overrightarrow b  + \overrightarrow c } \right)\)

\( \Rightarrow \overrightarrow {CG'}  = \overrightarrow {AG'}  - \overrightarrow {AC}  = \overrightarrow a  + {1 \over 3}\left( {\overrightarrow b  + \overrightarrow c } \right) - \overrightarrow c  \)

               \(= {{3\overrightarrow a  + \overrightarrow b  - 2\overrightarrow c } \over 3}\)

Vậy \(\overrightarrow {CG'}  = 2\overrightarrow {GI} .\) Ngoài ra, điểm G không thuộc đường thẳng CG’ nên GI và CG’ là hai đường thẳng song song.

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật